

Fundamentals of mixing: a unified framework for mixing dynamics

Marseille, April 4th to 8th 2022 — Aix-Marseille Univ. & CNRS

	Morning	Afternoon
D1	Taual	Welcome14h00Presentation of CoPerMix & workshop programs, PhDs introduce themselves & PhD projects.History of mixing & motivation16h00
	Travel	E. Villermaux Mixing across ages. The eternal quest of mixing.
		Welcome cocktail 17h30
D2	Prerequisite on hydrodynamics & transfer 9h00 M. Dentz	Applications of mixing 114h00E. Santanach Carreras — Total14h00
	Brownian motion, random walk, Fick's law, Diffusion equation, Gaussian & Erf solutions, Advection-diffusion, Péclet number, Elementary fluid mechanics (Navier-Stokes, Reynolds number, Stokes reversibility, basic concepts of turbu- lence).	Discussion between consortium members 15h30 (secondments, collaborations, EU requirements, deliver- ables)
	icice).	Diner at '1860' 19h30 (for CoPerMix members)
	Lamellar approach9h00E. Villermaux	
D3	Diffusion on a moving substrate, Ranz's transform, Mixing time, Batchelor scale, concentration field & con- centration distribution, Case of a simple shear, of a log-normal stretching, Limits of Ranz's transform, Taylor-Aris dispersion.	Outdoor activity
		Diner at 'Les Arcenaulx' 19h30 (for CoPerMix PIs)
D4	Stirring protocols9h00T. Le Borgne9h00	Experimental techniques 14h00 B. Metzger, H. Lhuissier (for CoPerMix members only)
	Some stirring protocols, Dispersion, Chaotic flows, KAM tori, Lyapounov exponent, Statistics of stretching, origin, noise & drift,	Practical: Perform a basic mixing experiment (imaging, fluorescence, PIV, concentration field & distributions), Discuss experimental limits (spatial resolution, back- ground noise, photobleaching).
	Coalescence, phenomenology & modeling.	Demonstration: Brownian motion & Taylor reversibility experiment.
	Numerical methods9h00J. Schumacher, P. Meunier9h00	
D5	Principles of Direct Numerical Simulation, Diffusive Tracers Methods, Diffusive Strip Method, Technical aspects & computational times, Strengths & limits (low/high Péclet number, flow separatrix).	Travel
	End of the workshop 12h30	